

A Journal Established in early 2000 as National journal and upgraded to International journal in 2013 and is in existence for the last 10 years. It is run by Retired Professors from NIT, Trichy. Journal Indexed in JIR, DIF and SJIF. Research Paper

Available online at: <u>www.jrrset.com</u> UGC Approved Journal No: 45483 Volume 6, Issuel Pages 75-83 ISSN (Print) : 2347-6729 ISSN (Online) : 2348-3105 JIR IF : 2.54 SJIF IF : 4.334 Cosmos: 5.395

SECUREDATA GROUP SHARINGAND CONDITIONAL DISSEMINATION WITH MULTI-OWNERIN CLOUD COMPUTING

Dr.C.Parthasarathy, Mr. Md. Ateeq Ur Rahman , Mr. BOKAM RAO , Mr. Mohd Hussain

Department of Computer Science and Engineering, Shadan College of Engineering and Technology HYD, T.S, INDIA"

ABSTRACT With the rapid development of cloud services, huge volume of data is shared via cloud computing. Althoughcryptographic techniques have been utilized to provide data confidentiality in cloud computing, currentmechanisms cannot enforce privacy concerns over cipher text associated with multiple owners, which makes co-owners unable to appropriately control whether data disseminators can actually disseminate their data. In thispaper, we propose a secure data group sharing and conditional dissemination scheme with multi-owner in cloudcomputing, in which data owner can share private data with a group of users via the cloud in a secure way, anddata disseminator can disseminate the data to a new group of users if the attributes satisfy the access policies inthe cipher text. We further present a multiparty access control mechanism over the disseminated cipher text, inwhichthedataco-ownerscanappendnew accesspoliciestothecipher textduetotheirprivacypreferences.

Moreover, three policy aggregation strategies, including full permit, owner priority and majority permit, areprovided to solve the privacy conflicts problem caused by different access policies. The security analysis and experimental results show our scheme is practical and efficient for secure data sharing with multi-owner incloud computing.

1. INTRODUCTION

The popularity of cloud computing is obtained from the benefits of rich storage resources and instant access. It aggregates the resources of computing infrastructure, and then provides on-demand services over the Internet. Many famous companies are now providing public cloud services, such as Amazon, Google, Alibaba. These services allow individual users and enterprise users to upload data (e.g. photos, videos and documents) to cloud service provider (CSP), for the purpose of accessing the data at any time anywhere and sharing the data with others. In order to protect the privacy of users, most cloud services achieve access control by maintaining access control list (ACL). In this way, users can choose to either publish their data to anyone or grant access rights merely to their approved people. However, the security risks have raised concerns in people, due to the data is stored in plaintext form by the CSP. Once the data is posted to the CSP, it is out of the data owner's control. Unfortunately, the CSP is usually a semitrusted server which honestly follows the designated protocol, but might collect the users' data and even use them for benefits without users' consents. On the other hand, the data has tremendous usages by various data consumers to learn the behavior of users. These security issues motivate the effective solutions to protect data confidentiality. It is essential to adopt access control mechanisms to achieve secure data sharing in cloud computing. Currently, cryptographic mechanisms such as attribute-based encryption (ABE), identity- based broadcast encryption (IBBE), and remote attestation have been exploited to settle these security and privacy problems. ABE is one of the new cryptographic mechanisms used in cloud computing to reach secure and finegrained data sharing. It features a mechanism that enables an access control over encrypted data using access policies and ascribed attributes among decryption keys and cipher texts. As long as the attribute set satisfies the access policy that the cipher text can be decrypted. IBBE is another prevalent technique employed in cloud computing, in which users could share their encrypted data with multiple receivers at one time and the public key of the receiver can be regarded as any valid strings, such as unique identity and email. In fact, IBBE can be seen as a special case of ABE for policies consisting of an OR gate. Compared to ABE in which the secret key and cipher text are both correspond to a set of attributes, IBBE incurs low-cost key management and small constant policy sizes, which is more suitable for securely broadcasting data to specific receivers in cloud computing. Hence, by using identities, data owner can share data with a group of users in a secure and efficient manner, which motivates more users to share their private data via cloud.

2. OVERVIEW

We further present a multiparty access control mechanism over the disseminated ciphertext, in which the data coowners can append new access policies to the ciphertext due to their privacy preferences. Moreover, three policy

A Journal Established in early 2000 as National journal and upgraded to International journal in 2013 and is in existence for the last 10 years. It is run by Retired Professors from NIT, Trichy. Journal Indexed in JIR, DIIF and SJIF.

Research Paper

Available online at: <u>www.jrrset.com</u>

ISSN (Print) : 2347-6729 ISSN (Online) : 2348-3105 JIR IF : 2.54 SJIF IF : 4.334 Cosmos: 5.395

UGC Approved Journal No: 45483

aggregation strategies, including full permit, owner priority and majority permit, are provided to solve the privacy conflicts problem caused by different access policies. The security analysis and experimental results show our scheme is practical and efficient for secure data sharing with multi-owner in cloud computing.

> In this paper, we aim at presenting a novel data protection scheme by combining fragmentation, encryption, and dispersion with high performance and enhanced level of protection.

> Fragmentation methods are introduced for data storage in a cost-effective manner using a public Cloud for the less confidential data fragments.

> Our method can provide both, data storage cost effectiveness and prevention of any information leak from the storage in a public Cloud.

3. REQUIREMENTS

3.1 HARDWAREREQUIREMENT:

• PROCESSOR : PENTIUM IV 2.6 GHz, Intel Core 2 Duo.

• RAM : 512 MB DD RAM

• MONITOR : 15" COLOR

: 40 GB • HARD DISK

3.2 SOFTWAREREOUIREMENT

• Front End : J2EE (JSP, SERVLET)

• Back End : MY SQL 5.5

• Operating System : Windows 7

• IDE : Eclipse

3.3 FUNCTIONAL REOUIREMENTS

A functional requirement defines a function of a software-system or its component. A function is described as a set of inputs, the behaviour, and outputs. The outsourced computation is data is more secured. In this paper, we propose a secure data group sharing and conditional dissemination scheme with multi-owner in cloud computing, in which data owner can share private data with a group of users via the cloud in a secure way, and data disseminator can disseminate the data to a new group of users if the attributes satisfy the access policies in the ciphertext. We further present a multiparty access control mechanism over the disseminated ciphertext, in which the data co-owners can append new access policies to the ciphertext due to their privacy preferences.

> Proxy Agents: • Proxy Agent Console • Customer's Requirements • Customers Request > Customers: • User Console • Send Requirements.

3.4 NON-FUNCTIONAL REQUIREMENTS

:The major non-functional Requirements of the system are as follows \succ Usability

The system is designed with completely automated process hence there is no or less user intervention. \succ Reliability

The system is more reliable because of the qualities that are inherited from the chosen platform java. The code built by using java is more reliable. \succ Performance

This system is developing in the high level languages and using the advanced front-end and back-end technologies it will give response to the end user on client system with in very less time. \gg Supportability

The system is designed to be the cross platform supportable. The system is supported on a wide range of hardware and any software platform, which is having JVM, built into the system. > Implementation

The system is implemented in web environment using struts framework. The apache tomcat is used as the web server and windows xp professional is used as the platform. Interface the user interface is based on Struts provides HTML Tag

4. BRIEF NOTE ON DESIGN ENGINEERING

Design Engineering deals with the various UML [Unified Modelling language] diagrams for the implementation of project. Design is a meaningful engineering representation of a thing that is to be built. Software design is a process through which the requirements are translated into representation of the software. Design is the place where quality is rendered in software engineering. Design is the means to accurately translate customer requirements into finished product.

4.1 **GENERAL**

- 4.2 **USECASE DIAGRAM**
- 4.3 CLASSDIAGRAM
- 4.4 **OBJECTDIAGRAM**

A Journal Established in early 2000 as National journal and upgraded to International journal in 2013 and is in existence for the last 10 years. It is run by Retired Professors from NIT, Trichy. Journal Indexed in JIR, DIIF and SJIF.

Research Paper Available online at: <u>www.jrrset.com</u> UGC Approved Journal No: 45483 ISSN (Print) : 2347-6729 ISSN (Online) : 2348-3105 JIR IF : 2.54 SJIF IF : 4.334 Cosmos: 5.395

- 4.5 STATEDIAGRAM
- 4.6 SEQUENCED DIAGRAM
- 4.7 ACTIVITY DIAGRAM
- 4.8 COMPONENTDIAGRAM
- 4.9 DATAFLOW DIAGRAM
- 4.10 E-RDIAGRAM
- 4.11 DEPLOYMENTDIAGRAM
- 4.12 SYSTEM ARCHITECTURE

5.APPLICATIONS AND FUTURE ENHANCEMENTS 5.1 APPLICATION

The data owner can choose a policy aggregation strategy and define an access policy to enforce dissemination conditions. Then he encrypts data for a set of receivers, and outsources the ciphertext to CSP for sharing and dissemination. The data co-owners tagged by data owner can append access policies to the encrypted data with CSP and generate the renewed ciphertext. The data disseminator can access the data and also generate the reencryption key to disseminate data owner's data to others if he satisfies enough access policies in the ciphertext. The data accessory can decrypt the initial, renewed and re-encrypted ciphertext with her or his private key.

5.2 FUTURE ENHANCEMENT

We further present a multiparty access control mechanism over the ciphertext, which allows the data coowners to append their access policies to the ciphertext. Besides, we provide three policy aggregation strategies including full permit, owner priority and majority permit to solve the problem of privacy conflicts. In the future, we will enhance our scheme by supporting keyword search over the ciphertext.

6. CONCLUSION & REFERENCE

6.1 CONCLUSION

The data security and privacy is a concern for users in cloud computing. In particular, how to enforce privacy concerns of multiple owners and protect the data confidentiality becomes a challenge. In this paper, we present a secure data group sharing and conditional dissemination scheme with multi-owner in cloud computing. In our scheme, the data owner could encrypt her or his private data and share it with a group of data accessors at one time in a convenient way based on IBBE technique. Meanwhile, the data owner can specify fine-grained access policy to the ciphertext based on attribute-based CPRE, thus the ciphertext can only be re-encrypted by data disseminator whose attributes satisfy the access policy in the ciphertext.

REFERENCE:

1. Z. Yan, X. Li, M. Wang, and A. V. Vasilakos, "Flexible data access control based on trust and reputation incloudcomputing," IEEE Transactions on Cloud Computing, vol. 5, no. 3, pp. 485-498, 2017.

2. B.Lang, J.Wang, and Y.Liu, "Achieving flexible and self-contained data protection incloud computing," IEEE Access, vol. 5, pp. 1510-1523, 2017.

3. Q.Zhang,L.T.Yang,andZ.Chen, "Privacypreservingdeepcomputationmodeloncloudforbigdatafeaturelearning," IEEETransa ctionson Computers, vol. 65, no. 5, pp. 1351-1362, 2016.

4. H. Cui, X. Yi, and S. Nepal, "Achieving scalable access control over encrypted data for edge computing networks," IEEE Access, vol. 6, pp.30049–30059, 2018.

5. K.Xue, W.Chen, W.Li, J.Hong, and P.Hong, "Combining dataowner-side and cloud-

sideaccesscontrolforencryptedcloudstorage,"IEEETransactionsonInformation Forensicsand Security,vol.13, no.8,pp.2062-2074, 2018.

6. C.Delerablée,"Identity-

basedbroadcastencryptionwithconstantsizeciphertextsandprivatekeys,"Proc.InternationalConf.ontheTheory andApplicationof CryptologyandInformationSecurity(ASIACRYPT'2007), pp.200-215,2007.

7. N. Paladi, C. Gehrmann, and A. Michalas, "Providing user security guarantees in public infrastructure clouds," IEEETransactionsonCloud Computing, vol. 5, no.3, pp. 405-419, 2017.

8. J. Bethencourt, A. Sahai, and B. Waters, "Ciphertext-policy attribute based encryption," Proc. IEEE Symposium onSecurityand Privacy(SP'07), pp. 321-334, 2007.

9. L. Liu, Y. Zhang, and X. Li, "KeyD: secure key-deduplication with identity-based broadcast encryption," IEEETransactionson CloudComputing,2018,https://ieeexplore.ieee.org/document/8458136.

10. Q. Huang, Y. Yang, and J. Fu, "Secure data group sharing and dissemination with attribute and time conditions inPublicClouds," IEEETransactionsonServicesComputing,2018,https://ieeexplore.ieee.org/document/8395392.

11. Box, "Understandingcollaboratorpermissionlevels", https://community.box.com/t5/Collaborate-By-Inviting-

Others/Understanding-Collaborator-Permission-Levels/ta-p/144.

A Journal Established in early 2000 as National journal and upgraded to International journal in 2013 and is in existence for the last 10 years. It is run by Retired Professors from NIT, Trichy. Journal Indexed in JIR, DIIF and SJIF.

ISSN (Print) : 2347-6729 ISSN (Online) : 2348-3105 JIR IF : 2.54 SJIF IF : 4.334 Cosmos: 5.395

Available online at: <u>www.jrrset.com</u>

UGC Approved Journal No: 45483

12. Microsoft OneDrive, "Document collaboration and co-authoring", https://support.office.com/en-us/article/document-collaborationand-co-authoring-ee1509b4-1f6e-401e-b04a-782d26f564a4.

13. H.He,R.Li,X.Dong,andZ.Zhang, "Secure, efficient and fine grained data access control mechanism for P2P storage cloud," IEEE Transactions on Cloud Computing, vol.2, no.4, pp. 471-484, 2014.

14. Z. Qin, H. Xiong, S. Wu, and J. Batamuliza, "A survey of proxy reencryption for secure data sharing in cloudcomputing,"IEEETransactions onServicesComputing,2018,https://ieeexplore.ieee.org/document/7448446.

15. J. Son, D. Kim, R. Hussain, and H. Oh, "Conditional proxy reencryption for secure big data group sharing in cloudenvironment," Proc. of 2014 IEEE Conference on Computer Communications Workshops (INFOCOMWKSHPS), pp. 541–546, 2014.

16. L.Jiang, and D.Guo"Dynamic encrypted data sharing scheme based on conditional proxybroad castre-

encryptionforcloudstorage,"IEEE Access, vol.5, pp. 13336-13345, 2017.

17. K.Liang,M.H.Au,J.K.Liu,W.Susilo,D.S.Wong,G.Yang,Y.Yu,andA.Yang,"Asecureandefficientciphertext-policy attributebased proxy re-encryption for cloud data sharing," Future Generation Computer Systems, vol. 52, pp. 95-108, 2015.

18. X.Li,Y.Zhang,B.Wang,andJ.Yan,"Mona:securemulti-

ownerdatasharingfordynamicgroupsinthecloud,"IEEETransactionson Paralleland Distributed Systems, vol.24, no. 6, pp. 1182-1191, 2013.

19. K. Xu, Y. Guo, L. Guo, Y. Fang, and X. Li, "My privacy my decision: control of photo sharing on online socialnetworks," IEEE Trans. OnDependableand Secure Computing,vol. 14, no.2, pp.199-210, 2017.

20. K. Thomas, C. Grier, and D. M. Nicol, "UnFriendly: multi-party privacy risks in social networks," Proc. InternationalSymposium on PrivacyEnhancing Technologies Symp.(PETS'2010), pp. 236-252, 2010.

21. L.Fang,L.Yin,Y.Guo,Z.Wang,andFenzhuaLi,"Resolvingaccessconflicts:anauction-basedincentiveapproach,"Proc.IEEE MilitaryCommunications Conference (MILCOM),pp. 1-6, 2018.

22. L. Xu, C. Jiang, N. He, Z. Han, and A. Benslimane, "Trust-based collaborative privacy management in online socialnetworks," IEEE Transactions on Information Forensics and Security, vol. 14, no.1, pp. 48-60, 2019.

23. C.GentryandB.Waters, "Adaptivesecurityinbroadcastencryptionsystems(withshortciphertexts),"Proc.28thAnn.Internationa 1 Conf. on Advances in Cryptology: the Theory and Applications of Cryptographic (EUROCRYPT '09), pp.171-188, 2009.

24. Q.Huang,W.Yue,Y.He,andY.Yang, "Secure identity-based datasharing and profilematching formobile health caresocial networks incloud computing," IEEE Access, vol.6, pp.36584–36594,2018.

25. S. Patranabis, Y. Shrivastava, and D. Mukhopadhyay, "Provably secure key-aggregate cryptosystems with broadcastaggregatekeys foronlinedatasharingonthecloud,"IEEETransactionsonComputers,vol.66,no.5,pp.891–904,2017.

26. A. Sahai and B. Waters, "Fuzzy identity-based encryption," Proc. 24th Ann. International Conf. on Theory and Applications of Cryptographic Techniques (EUROCRYPT'05), pp. 457-473,2005.

27. V.Goyal,O.Pandey,A.Sahai,andB.Waters, "Attribute-basedencryptionforfine-grainedaccesscontrolofencrypteddata," Proc. 13th ACMConf. on Computerand Communications Security (CCS'06), pp.89-98,2006.

28. S. Wang, K. Liang, J. K. Liu, J. Chen, J. Yu, and W. Xie, "Attribute based data sharing scheme revisited in cloudcomputing,"IEEE Transactionson InformationForensicsandSecurity, vol.11, no.8, pp.1661–1673, 2016.

29. L.Guo,C.Zhang,H.Yue,andY.Fang,"Aprivacy-

preservingsocialassisted mobile content dissemination scheme in DTNs," Proc.32nd IEEE International Conf. on Computer Communications (INFOCOM '2013), pp.2301-2309, 2013.

30. W. Teng, G. Yang, Y. Xiang, T. Zhang, and D. Wang, "Attribute based access control with constant-size ciphertext incloudcomputing,"IEEE Transactions on CloudComputing, vol. 5, no.4, pp.617-627, 2017.

31. Y. Zhang, D. Zheng, and R. H. Deng, "Security and privacy in smart health: efficient policy-hiding attribute-basedaccess control," IEEE Internetof ThingsJournal,vol.5, no. 3, pp. 2130-2145,2018.

32. K. Seol, Y. Kim, E. Lee, Y. Seo, and D. Baik, "Privacy-preserving attribute- based access control model for XML-basedelectronic healthrecord system," IEEE Access, vol. 6, pp. 9114-9128, 2018.

33. M.GreenandG.Ateniese,"Identity-basedproxyre-

encryption,"Proc.5thInternationalConf.onAppliedryptographyandNetworkSecurity(ACNS '07),pp.288-306,2007.

34. Y. Zhou, H. Deng, Q. Wu, B. Qin, J. Liu, and Y. Ding, "Identity-based proxy re-encryption version 2: Making mobileaccess easyin cloud,"Future Generation ComputerSystems, vol.62, pp.128-139,2016.

35. J.Weng, R.H.Deng, X.Ding, C.K.Chu, and J.Lai, "Conditional proxyre-encryption secure against chosen-

ciphertextattack,"inProc.of4thInternationalSymposiumonInformation,Computer,andCommunicationsSecurity(ASIACCS'09),pp. 322-332, 2009.

36. P. Xu, T. Jiao, Q. Wu, W. Wang, and H. Jin, "Conditional identity based broadcast proxy re-encryption and itsapplicationtocloudemail,"IEEE Trans.on Computers, vol. 65, no.1,pp. 66-79, 2016.

37. Y. Yang, H. Lu, J. Weng, Y. Zhang, and K. Sakurai, "Fine-grained conditional proxy re-encryption and application,"Proc.InternationalConf. on ProvableSecurity(ProvSec '2014),pp.206-222,2014.

38. K. Wang, J. Yu, X. Liu and S. Guo, "A pre-authentication approach to proxy re-encryption in big data context," IEEETransactionson Big Data,2018,https://ieeexplore.ieee.org/document/7921569.

A Journal Established in early 2000 as National journal and upgraded to International journal in 2013 and is in existence for the last 10 years. It is run by Retired Professors from NIT, Trichy. Journal Indexed in JIR, DIIF and SJIF.

Research Paper

Available online at: www.jrrset.com

UGC Approved Journal No: 45483

ISSN (Print) : 2347-6729 ISSN (Online) : 2348-3105 JIR IF: 2.54 SJIF IF : 4.334 Cosmos: 5.395

H. Hu, G. J. Ahn, and J. Jorgensen, "Detecting and resolving privacy conflicts for collaborative data sharing in 39. onlinesocial networks,"Proc.27th Ann.Computer SecurityApplications Conf.(ACSAC'11),pp. 103-112,2011.

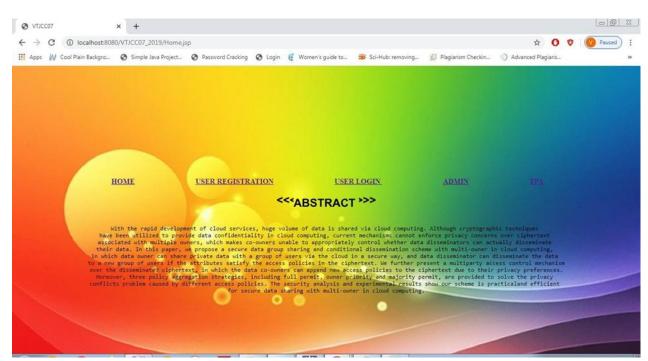
J. M. Such and N. Criado, "Resolving multi-party privacy conflicts in social media," IEEE Trans. on Knowledge 40. andData Engine, vol. 28, no. 7, pp. 1851-1863, 2016. Transactions on Information Forensics and Security, vol. 14, no. 1, pp.48-60, 2019.

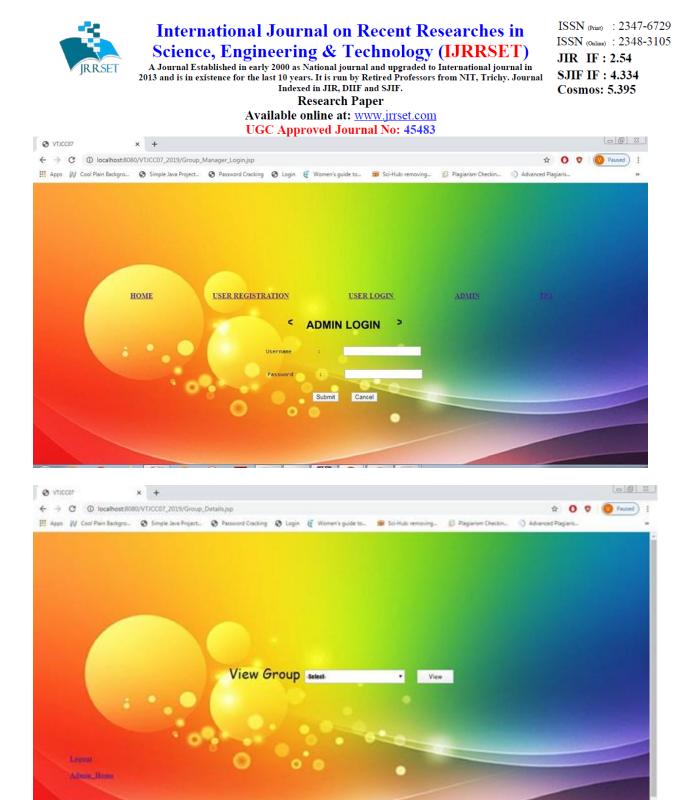
H. Hu, G. Ahn, and J. Jorgensen, "Multiparty access control for online social networks: Model and 41. mechanisms,"IEEETrans. on Knowledgeand Data Engine, vol.25,no. 7, pp. 1614-1627, 2013.

Q.Huang, Y.Yang, and M.Shen, "Secure and efficient data collaboration with hierarchical attribute-based encryption incloud 42. computing,"Future Generation Computer Systems, vol.72,pp. 239-249,2017.

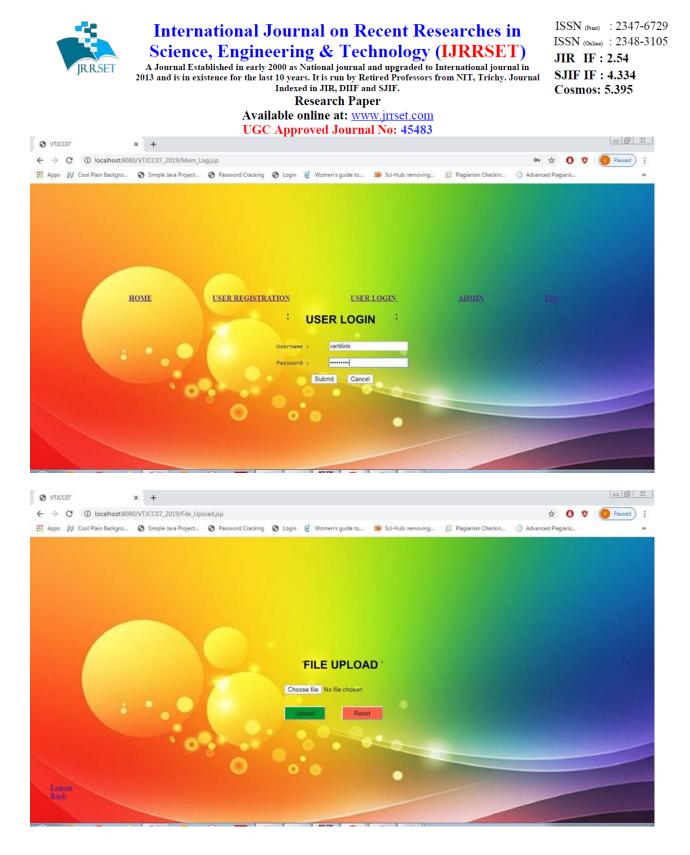
J.Hur,"Improvingsecurityandefficiencyinattribute-baseddatasharing,"IEEETrans.onKnowledgeandDataEng.,vol. 43. 25,no. 10,pp. 2271-2282, 2013.

K. Yang and X. Jia, "Expressive, efficient, and revocable data access control for multi-authority cloud storage," 44. IEEETransactionson Paralleland Distributed Systems, vol.25, no. 7, pp.1735-1744, 2014.


S. Jiang, T. Jiang, and L. Wang, "Secure and efficient cloud data deduplication with ownership management,", 45. IEEETransactionsonServicesComputing, https://ieeexplore.ieee.org/document/8100969


46. B.Lynn.Thepairing-basedcryptographylibrary.[Online].Available:http://crypto.stanford.edu/pbc/,accessedMarch1, 2018. 47. A.Michalas,"Thelordoftheshares:combiningattribute-

basedencryptionandsearchableencryptionforflexibledatasharing,"Proc.34thACM/SIGAPPSymposium On Applied Computing(SAC), pp.146-155, 2019.


P. Xu, H. Jin, Q. Wu, and W. Wang, "Public-key encryption with fuzzy keyword search: a provably secure 48. schemeunderkeyword guessing attack," IEEE TransactionsonComputers, vol. 62, no. 11, pp.2266-2277, 2013

APPLICATION SNAPSHOTS:

ISSN (Print) : 2347-6729 **International Journal on Recent Researches in** ISSN (Online) : 2348-3105 Science, Engineering & Technology (IJRRSET) A Journal Established in early 2000 as National journal and upgraded to International journal in 2013 and is in existence for the last 10 years. It is run by Retired Professors from NIT, Trichy. Journal Indexed in JIR, DIIF and SJIF. JIR IF: 2.54 IRRSET SJIF IF : 4.334 **Cosmos: 5.395 Research Paper** Available online at: www.jrrset.com UGC Approved Journal No: 45483 00 2 S VTJCC07 × + ← → C ① localhost:8080/VTJCC07_2019/Log.jsp ☆ O ♥ 🚫 Paused) : 🔢 Apps 🙌 Cool Plain Backgro... 🔇 Simple Java Project... 🤇 Password Cracking 🔇 Login 🥰 Women's guide to... 🐲 Sci-Hubr removing... 🧊 Plagianism Checkin... 🥎 Advanced Plagianism User Id File Name Group Status Date 0 10 11 Ø vticcer × + ← → C @ localhost/080/VTJCC07_2019/Reg.inp 1 0 0 1 (0 Fauled) 1 🗒 Apps 🔰 Cool Pain Backgro.. 🔕 Simple Java Project. 🕲 Password Cooking 🕲 Login 🧃 Women's guide to.. -Advanced Plaga HOME USER REGISTRATION USER LOGIN **SUSER REGISTRATION** ssec na -Select- * C.mail CONTACT A Place Register Reset

ISSN (Print) : 2347-6729 **International Journal on Recent Researches in** ISSN (Online) : 2348-3105 Science, Engineering & Technology (IJRRSET) A Journal Established in early 2000 as National journal and upgraded to International journal in 2013 and is in existence for the last 10 years. It is run by Retired Professors from NIT, Trichy. Journal Indexed in JIR, DIIF and SJIF. JIR IF: 2.54 IRRSET SJIF IF : 4.334 **Cosmos: 5.395 Research Paper** Available online at: www.jrrset.com UGC Approved Journal No: 45483 S VTJCC07 662 × + ← → C ③ localhost:8080/VTJCC07_2019/Check.jsp •• ☆ O ♥ 📀 Paused : 🔢 Apps 🙌 Cool Plain Backgro... 🤡 Simple Java Project... 🥸 Password Cracking 🔇 Login 🧯 Women's guide to... 🐞 Sci-Hub: removing... 👸 Plagiarism Checkin... Advanced Plagiaris... NPP AUDITING > UserName: Group : -Select-FileName: File Key: Verify Reset