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Abstract 

The aim of the project is to update scheduling in streaming data warehouses, which combines the 

features of traditional data ware houses and data stream systems. Warehouse tables are horizontally 

partitioned, where the separation of recent and historical data are done. Updating of jobs are handling 

through append mode. Scheduling decisions depends on the effect of update jobs on data streams. The 

main innovation is the Max Benefit Look Ahead algorithm for handling the large and heterogeneous 

job sets. Dynamic views not handled and efficient handling of multiple jobs at the same time is the 

problems addressed in the current data mining field. The project concerns this criterion in an effective 

manner. Tables in a streaming warehouse are partitioned by time, thus for many classes of views, 

updates only need to access one or a few of the most recent partitions. It considers the sequence that 

never leaves the system idle. It considers future jobs scheduled to arrive before the current job with 

highest marginal benefit is expected to complete. An important property of the data streams in this 

motivating application is that they are append-only in nature.  

Keywords: Streaming data warehouse, Data staleness, Data freshness. 
 

1. Introduction  

The streaming data warehouse maintains two types of tables: base and derived. Each table may be 

stored partially or wholly on disk. A base table is loaded directly from a data stream. A derived table 

is a materialized view defined as an SQL query over one or more tables. Each base or derived table  

has a user-defined priority  and a time-dependent staleness function  (τ) that will be defined 

shortly. When new data arrive on stream i, an update job  is released whose purpose is to execute the 

ETL tasks, load the new data into the corresponding base table , and update any indices. When this 

update job is completed, update jobs are released for all tables directly sourced from  in order to 

propagate the new data that have been loaded into . When those jobs are completed, update jobs for 

the remaining dependent tables are released in the breadth-first order specified by the dependency 

graph. Each update job is modelled as an atomic, non preemptible task. The purpose of an update 

scheduler is to decide which of the released update jobs to execute next, the need for resource control 

prevents from always executing update jobs as soon as they are released. 

The warehouse completes all the update jobs thus data cannot be dropped. Furthermore, if multiple 

updates to a given table are pending, they must be completed in chronological order. Thus it cannot 

load a batch of new data into a table if there is an older batch of data for the table that has not yet 

loaded. In practice, warehouse tables are horizontally partitioned by time so that only a small number 

of recent partitions are affected by updates. Historical partitions are usually stored on disk or in 
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memory. Updates of base tables simply append new records to recent partitions. Affected partitions of 

derived tables may be recomputed from scratch or updated incrementally. In addition to being updated 

regularly as new data arrive, derived tables often store large amounts of historical data. It can reduce 

the number of partitions per derived table by using small partitions for recent and large partitions for 

historical data.   

 In some cases, it may want to update several tables together. For instance, if a base table is a direct 

source of a set T of many derived tables, it may be more efficient to perform a single scan of this base 

table to update all the tables in T. To do so in this model, here define a single update job for all the 

tables in T. In the existing framework it is difficult to pre-empt, which for a heterogeneous workload 

is to allow preemptions and also transparent updating and deletion of row are not maintained. In the 

proposed system it includes the notion of average staleness as a scheduling metric and presented 

scheduling algorithms designed to handle the complex environment of a streaming data warehouse. 
 

2. Related Works 

Streaming warehouses maintains a unified view of current and historical data. This enables a real-time 

decision support for business-critical applications that receive streams of append-only data from 

external sources. This has many applications which include online stock trading, Credit card detection 

or telephone card detection. Streaming warehouses in this context focused on Extract-Transform-Load 

process [1]. Each view reflects a consistent state of its base data [2], even if different base tables are 

scheduled for updates at different times [3]. The real-time community has developed the notion of 

Pfair scheduling for real-time scheduling on multiprocessors [4]. This framework helps to enable on 

continuously inserting a streaming data feed at bulk-load speed [5]. The great deal of data 

warehousing has focused on efficient maintenance of various classes of materialized views [6]. 
 

3. Proposed Description 

In the proposed method, the notion of average staleness as scheduling metric and presented scheduling 

algorithms designed to handle the complex environment of a streaming data warehouse. Max Benefit 

with Lookahead algorithm is used for choosing the next job to be executed. In this framework it 

considers as follows:  the released job with the highest marginal benefit. For each  whose expected 

release time  is within  of the current time and whose marginal benefit is higher than that of . For 

each  whose expected release time  is within  of the current time and whose marginal benefit is 

higher than that of . For each set S of released jobs  such that ≤ ( )< . 

B[s] = . 

If B[s] > marginal benefit of  then it schedule the job with highest marginal benefit from set 

B[S] else it would schedule the job . Here  has the highest marginal benefit, but a 

job with a higher marginal benefit  will be released before  is completed. The Lookahead 

algorithm needs to find alternate sequences of jobs whose running time is between 1 and 2, and 

compute their B[S] values intuitively; B[S] represents the marginal benefit of running all the tasks in S 

followed by . The Lookahead algorithm employs a number of heuristics to prune the number of 

alternate job sets. It considers the sequences that never leave the system idle )). It 

considers future jobs scheduled to arrive before the current job with highest marginal benefit is 

expected to complete. 
 

Database Monitoring 

 For analyzing the current status of the tables and to view the update as quickly as possible, database 

monitoring would be implemented. At first the job is created based on the user requirement and needs. 

The job is created with the parameters such as priority and staleness, which would be different for 

different applications. After the job is created, it would be sent to the server for its approval, if the job 
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is approved it would be placed in job pool. Scheduling of jobs depend on Max Benefit with 

Lookahead algorithm. The job would be scheduled according to the increasing Max Benefit with 

Lookahead value. Here it helps the user to view the Jobs details and Data scheduling value to update 

in every minute. It helps the client and server interaction to the database which is used to dynamically 

create the table based on the server entering value. On the server side, approval of jobs for scheduling 

takes place. The parameters of the job as priority and staleness are taken in to account for its approval. 

The main feature of this framework is it enables to see all the jobs skill based details in single search. 

The user to search the events based on the requirements but the admin to view all users and admin 

created Jobs details. The approved job is placed in job pool. System meter is provided for analyzing 

the CPU and disk usage. If a job set is heterogeneous with respect to the periods and execution times, 

scheduler performance is likely to benefit if some fraction of the processing resources are guaranteed 

to short jobs. 

  The execution time of an update job is a function of the amount of new data to be loaded. Let n be 

the time interval of the data to be loaded. Then define the execution time of an update job  as : 

(n)=  

Where  corresponds to the time to initialize the ETL process, acquire locks, and  represents the 

data arrival rate. Clearly   may vary across tables. Then can estimate the values for  and  

may vary across tables. Then can estimate the values for  and  from recently observed execution 

times; the value of n for a particular update job may be approximated by its freshness delta. A new 

update job is released whenever a batch of new data arrives, the multiple jobs may be pending for the 

same table if the warehouse was busy with updating other tables. For now, it assume that all such 

instances of pending update jobs are merged into a single update job that loads all the available data 

into that table. This strategy is more efficient than executing each such update job separately because 

here pay the fixed cost  only once. 

This framework uses the extension of Max Benefit algorithm [7]. The benefit of executing a job  

may be defined as  that is its priority weighted freshness delta. Since the marginal benefit does 

not depend on the period, it can use Max Benefit for periodic and aperiodic update jobs. During 

transient overload, low-priority jobs are deferred in favour of high priority jobs. When the period of 

transient overload is over, the low-priority jobs will be scheduled for execution. Since they have been 

delayed for a long time, they will have accumulated a large freshness delta and therefore a large 

execution time and therefore might block the execution of high-priority jobs. A solution to this 

problem is to chop up the execution of the jobs that have accumulated a long freshness delta to a 

maximum of their periods. This technique introduces a degree of preemptibility into long jobs, 

reducing the chances of priority inversion [8]. Materialized view hierarchies can make the proper 

prioritization of jobs difficult. If a high priority view is sourced from a low priority view, then it 

cannot be updated until the source view is which might take a long time since the source views need 

to inherit the priority of their dependent views. The interaction of queries and updates in a firm real-

time database, i.e., how to install updates to keep the data fresh [9] but also ensure that read 

transactions meet their deadlines [10]. In the context of web databases, this aims to balance the quality 

of service of read transactions against data freshness [11]. Focus on streaming data warehousing  

includes the system design [12], real-time ETL processing [13], and continuously inserting a 

streaming data feed at bulk-load speed [14]. 

 

Performance evaluation:  

Time management is acquired positively during this framework. Also consistency of data is achieved 

through the database monitoring. The simulator framework generates periodic data arrivals, monitors 

data arrivals, monitors track usage, and generates a call to the scheduler on every data arrival or job 

completion. An advantage of using a simulation rather than a prototype of a streaming data warehouse 

is the ability to perform a very large number of tests in reasonable time and under precisely controlled 

conditions.   
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4. Analysis 

This framework has many applications in different sectors. With the database monitoring concept used 

in this context enables the view of both the current and historical data which is stored in the database. 

Efficient handling of multiple jobs at a time increases the performance of the system. Consistency of 

the data is achieved through this scenario. Staleness parameter of the data helps to avoids 

disambiguates of handling the multiple jobs at the same time by the server.  
 

5. Conclusion  

This paper handles the effectiveness of time management of the data. Through this scenario 

consistency of data is also achieved. It formalized and solved the problem of nonpreemptively 

scheduling updates in a real-time streaming warehouse. The main feature of this framework is the 

ability to reserve resources for short jobs that often correspond to important frequently refreshed 

tables, while avoiding the inefficiencies associated with partitioned scheduling techniques 
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