

International Journal on Recent Researches in Science, Engineering & Technology (IJRRSET)

A Journal Established in early 2000 as National journal and upgraded to International journal in 2013 and is in existence for the last 10 years. It is run by Retired Professors from NIT, Trichy. Journal Indexed in JIR, DIF and SJIF. Research Paper

Available online at: <u>www.jrrset.com</u> UGC Approved Journal No: 45483 Volume 8, Issue3 Pages 34-37 ISSN (Print) : 2347-6729 ISSN (Online) : 2348-3105 JIR IF : 2.54 SJIF IF : 4.334 Cosmos: 5.395

PRIVACY-PRESERVING PUBLIC AUDITING FOR SECURE CLOUD STORAGE

¹Dr.Muntha Raju,² Mr. Mohd Maseeuddin, ³Mr. Mohd Harun

¹Professor, ²Associate Professor, ³Assist professor ^{1,2,3} Dept of CSE , Shadan College of Engg & Tech

ABSTRACT-In Cloud Environment, using cloud storage service, users can remotely store their data and enjoy the ondemand high-quality applications and services from a shared pool of configurable computing resources, without the burden of local data storage and maintenance. However, the fact that users no longer have physical possession of the outsourced data makes the data integrity protection in cloud computing a formidable task, especially for users with constrained computing resources. Moreover, users should be able to just use the cloud storage as if it is local, without worrying about the need to verify its integrity. Thus, enabling public audit ability for cloud storage is of critical importance so that users can resort to a third-party auditor (TPA) to check the integrity of outsourced data and be worry free. To securely introduce an effective TPA, the auditing process should bring in no new vulnerabilities toward user data privacy, and introduce no additional online burden to user. In this paper, we propose a secure cloud storage system supporting privacy-preserving public auditing. We further extend our result to enable the TPA to perform audits for multiple users simultaneously and efficiently. Extensive security and performance analysis show the proposed schemes are provably secure and highly efficient.

Keywords: Cloud Service Providers, Third Party Auditor, Cloud Data Storage Service, Privacy-Preserving Public Auditing

1. INTRODUCTION

Cloud computing has been envisioned as the next generation information technology (IT) architecture for enterprises, due to its long list of unprecedented advantages in the IT history: on-demand self-service, ubiquitous network access, location independent resource pooling, rapid resource elasticity, usage-based pricing and transference of risk . From users' perspective, including both individuals and IT enterprises, storing data remotely to the cloud in a flexible on-demand manner brings appealing benefits: relief of the burden for storage management, universal data access with location independence, and avoidance of capital expenditure on hardware, software, and personnel maintenances, etc. While cloud computing makes these advantages more appealing than ever, it also brings new and challenging security threats toward users' outsourced data. Since cloud service providers (CSP) are separate administrative entities, data outsourcing is actually relinquishing user's ultimate control over the fate of their data. As a result, the correctness of the data in the cloud is being put at risk due to the following reasons. First of all, although the infrastructures under the cloud are much more powerful and reliable.

Objective of this paper is to develop and enable privacy-preserving public auditing for cloud data storage under the aforementioned model, our protocol design should achieve the following security and performance guarantees Public audit ability, Storage correctness, Privacy preserving, Batch auditing, Lightweight Communication.

2. EXISTING SYSTEM

We consider a cloud data storage service involving three different entities: the cloud user, who has large amount of data files to be stored in the cloud; the cloud server, which is managed by the cloud service provider to provide data storage service and has significant storage. space and computation resources (we will not differentiate CS and CSP hereafter); the third-party auditor, who has expertise and capabilities that cloud users do not have and is trusted to assess the cloud storage service reliability on behalf of the user upon request. Users rely on the CS for cloud data storage and maintenance. They may also dynamically interact with the CS to access and update their stored data for various application purposes. As users no longer possess their data locally, it is of critical importance for users to ensure that their data are being correctly stored and maintained. In short, although outsourcing data to the cloud is

International Journal on Recent Researches in Science, Engineering & Technology (IJRRSET) A Journal Established in early 2000 as National journal and upgraded to International journal in 2013 and is in existence for the last 10 years. It is run by Retired Professors from NIT, Trichy. Journal Indexed in JIR, DIIF and SJIF. ISSN (Print) : 2347-6729 ISSN (Online) : 2348-3105 JIR IF : 2.54 SJIF IF : 4.334 Cosmos: 5.395

Research Paper

Available online at: <u>www.jrrset.com</u> UGC Approved Journal No: 45483

economically attractive for long-term large-scale storage, it does not immediately offer any guarantee on data integrity and availability.

This problem, if not properly addressed, may impede the success of cloud architecture. To save the computation resource as well as the online burden potentially brought by the periodic storage correctness verification, cloud users may resort to TPA for ensuring the storage integrity of their outsourced data. Public audit ability allows an external party, in addition to the user himself, to verify the correctness of remotely stored data. However, most of these schemes, do not consider the privacy protection of users' data against external auditors. It does not consider the privacy protection of user's data against external auditors gives unnecessary processing burden.

3. LITERATURE REVIEW

Cloud Computing has been envisioned as the next-generation architecture of IT Enterprise. It moves the application software and databases to the centralized large data centers, where the management of the data and services may not be fully trustworthy. This unique paradigm brings about many new security challenges, which have not been well understood. This work studies the problem of ensuring the integrity of data storage in Cloud Computing. In particular, we consider the task of allowing a third party auditor (TPA), on behalf of the cloud client, to verify the integrity of the dynamic data stored in the cloud. The introduction of TPA eliminates the involvement of the client through the auditing of whether his data stored in the cloud is indeed intact, which can be important in achieving economies of scale for Cloud Computing. The support for data dynamics via the most general forms of data operation, such as block modification, insertion and deletion, is also a significant step toward practicality, since services in Cloud Computing are not limited to archive or backup data only. While prior works on ensuring remote data integrity often lacks the support of either public auditability or dynamic data operations, this paper achieves both. We first identify the difficulties and potential security

problems of direct extensions with fully dynamic data updates from prior works and then show how to construct an elegant verification scheme for the seamless integration of these two salient features in our protocol design. In particular, to achieve efficient data dynamics, we improve the existing proof of storage models by manipulating the classic Merkle Hash Tree construction for block tag authentication. To support efficient handling of multiple auditing tasks, we further explore the technique of bilinear aggregate signature to extend our main result into a multi-user setting, where TPA can perform multiple auditing tasks simultaneously. Extensive security and performance analysis show that the proposed schemes are highly efficient and provably secure. A growing number of online services, such as Google, Yahoo!, and Amazon, are starting to charge users for their storage. Customers often use these services to store valuable data such as email, family photos and videos, and disk backups. Today, a customer must entirely trust such external services to maintain the integrity of hosted data and return it intact. Unfortunately, no service is infallible. To make storage services accountable for data loss, we present protocols that allow a third party auditor to periodically verify the data stored by a service and assist in returning the data contents to the auditor. Our solution removes the burden of verification from the customer, alleviates both the customer's and storage service's fear of data leakage, and provides a method for independent arbitration of data retention contracts.

4. EXISTING SYSTEM

We consider a cloud data storage service involving three different entities: the cloud user, who has large amount of data files to be stored in the cloud; the cloud server, which is managed by the cloud service provider to provide data storage service and has significant storage. space and computation resources (we will not differentiate CS and CSP hereafter); the third-party auditor, who has expertise and capabilities that cloud users do not have and is trusted to assess the cloud storage service reliability on behalf of the user upon request. Users rely on the CS for cloud data storage and maintenance. They may also dynamically interact with the CS to access and update their stored data for various application purposes. As users no longer possess their data locally, it is of critical importance for users to ensure that their data are being correctly stored and maintained. In short, although outsourcing data to the cloud is economically attractive for long-term large-scale storage, it does not immediately offer any guarantee on data integrity and availability. This problem, if not properly addressed, may impede the success of cloud architecture. To save the computation resource as well as the online burden potentially brought by the periodic storage correctness verification, cloud users may resort to TPA for ensuring the storage integrity of their outsourced data. Public audit ability allows an

International Journal on Recent Researches in Science, Engineering & Technology (IJRRSET)

A Journal Established in early 2000 as National journal and upgraded to International journal in 2013 and is in existence for the last 10 years. It is run by Retired Professors from NIT, Trichy. Journal Indexed in JIR, DIIF and SJIF. Research Paper

Available online at: <u>www.jrrset.com</u> UGC Approved Journal No: 45483 ISSN (Print) : 2347-6729 ISSN (Online) : 2348-3105 JIR IF : 2.54 SJIF IF : 4.334 Cosmos: 5.395

external party, in addition to the user himself, to verify the correctness of remotely stored data. However, most of these schemes, do not consider the privacy protection of users' data against external auditors. It does not consider the privacy protection of user's data against external auditors gives unnecessary processing burden.

5. PROPOSED WORK

Our work is among the first few ones to support privacy-preserving public auditing in cloud computing, with a focus on data storage. Besides, with the prevalence of cloud computing, a foreseeable increase of auditing tasks from different users may be delegated to TPA. Our work also utilizes the technique of public key-based homomorphic linear authenticator or HLA which enables TPA to perform the auditing without demanding the local copy of data and thus drastically reduces the communication and computation overhead as compared to the straightforward data auditing approaches. By integrating the HLA with random masking, our protocol guarantees that the TPA could not learn any knowledge about the data content stored in the cloud server (CS) during the efficient auditing process. The aggregation and algebraic properties of the authenticator further benefit our design for the batch auditing.

Thw advantages are Public audit ability -- to verify the correctness of the cloud data on demand without retrieving a copy of the whole data. It provides security and performance guarantees.

6. DATABASE DESIGN STRUCTURE

Database design is the process of producing a detailed data model of a database. This logical data model contains all the needed logical and physical design choices and physical storage parameters needed to generate a design in a Data Definition Language, which can then be used to create a database. A fully attributed data model contains detailed attributes for each entity.

Cloud User Info: This table is used for storing the details of users who has registered with Public cloud.

	Column Name	Data Type	Allow Nulls
►	FullName	nvarchar(50)	
P	UserID	nvarchar(50)	
	Password	nvarchar(50)	
	ContactNumber	bigint	
	EmailID	nvarchar(50)	
	Address	nvarchar(MAX)	
	SecretQuestion	nvarchar(50)	
	SecretAnswer	nvarchar(50)	

Data Storage Log

In this table user data storage logs are stored dynamically.

	Column Name	Data Type	Allow Nulls
	JserID	nvarchar(50)	
F	ileName	nvarchar(50)	
	Size	float	
l	JploadDate	datetime	

Audit Request

This table helps to keep the records of audit requests that are generated by the users.

International Journal on Recent Researches in Science, Engineering & Technology (IJRRSET) A Journal Established in early 2000 as National journal and upgraded to International journal in 2013 and is in existence for the last 10 years. It is run by Retired Professors from NIT, Trichy. Journal Indexed in JIR, DIIF and SJIF.

JIR IF : 2.54 SJIF IF : 4.334 Cosmos: 5.395

ISSN (Print) : 2347-6729

ISSN (Online) : 2348-3105

Research Paper

Available online at: <u>www.jrrset.com</u> UGC Approved Journal No: 45483

7. CONCLUSION

We proposed a privacy-preserving public auditing system for data storage security in cloud computing. We utilize the homomorphic linear authenticator and random masking to guarantee that the TPA would not learn any knowledge about the data content stored on the cloud server during the efficient auditing process, which not only eliminates the burden of cloud user from the tedious and possibly expensive auditing task, but also alleviates the users' fear of their outsourced data leakage.

REFERENCES

1. Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, "Enabling Public Auditability and Data Dynamics for Storage Security in Cloud Computing," IEEE Trans. Parallel and Distributed Systems, vol. 22, no. 5, pp. 847-859, May 2011.

2. G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song, "Provable Data Possession at Untrusted Stores," Proc. 14th ACM Conf. Computer and Comm. Security (CCS '07), pp. 598-609, 2007.

3. M.A. Shah, R. Swaminathan, and M. Baker, "Privacy-Preserving Audit and Extraction of Digital Contents," Cryptology ePrint Archive, Report 2008/186, 2008.

4. C. Wang, K. Ren, W. Lou, and J. Li, "Towards Publicly Auditable Secure Cloud Data Storage Services," IEEE Network Magazine, vol. 24, no. 4, pp. 19-24, July/Aug. 2010.

5. M.A. Shah, M. Baker, J.C. Mogul, and R. Swaminathan, "Auditing to Keep Online Storage Services Honest," Proc. 11th USENIX Workshop Hot Topics in Operating Systems (HotOS '07), pp. 1-6, 2007.

6. R. Curtmola, O. Khan, and R. Burns, "Robust Remote Data Checking," Proc. Fourth ACM Int'l Workshop Storage Security and Survivability (StorageSS '08), pp. 63-68, 2008.

7. A.L. Ferrara, M. Green, S. Hohenberger, and M. Pedersen, "Practical Short Signature Batch Verification," Proc. Cryptographers' Track at the RSA Conf. 2009 on Topics in Cryptology (CT-RSA), pp. 309-324, 2009.

8. G. Ateniese, R.D. Pietro, L.V. Mancini, and G. Tsudik, "Scalable and Efficient Provable Data Possession," Proc. Int'l Conf. Security and Privacy in Comm. Networks (SecureComm '08), pp. 1-10, 2008.

9. G. Ateniese, S. Kamara, and J. Katz, "Proofs of Storage from Homomorphic Identification Protocols," Proc. 15th Int'l Conf. Theory and Application of Cryptology and Information Security: Advances in Cryptology (ASIACRYPT), pp. 319-333, 2009.

10. F. Sebe, J. Domingo-Ferrer, A. Martı'nez-Balleste, Y. Deswarte, and J.-J. Quisquater, "Efficient Remote Data Possession Checking in Critical Information Infrastructures," IEEE Trans. Knowledge and Data Eng., vol. 20, no. 8, pp. 1034-1038, Aug. 2008.