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ABSTRACT 

In this paper we discuss certain fundamental properties of n-inner product space via an  – normed linear space. 

Keywords: n-inner product, n-inner product space, n-normed product space. 

Introduction:1.1 

This paper is dealt with some properties of an  – inner product space . Also we 

establish the explicit forms of  – inner product space via an  – normed linear space. Some 

inter related results among – normed linear space and  – inner product space also shown 

here. 

Definition:1.2 

          Let  be a positive integer and X be a vector space of dimension  (d may be 

infinite) over the field of real numbers R. A real valued function  is defined 

on  satisfying the following conditions 

(I1)   for any  and                            

    if and only if  are linearly dependent vectors. 

(I2)   for every permutation            

     of  

(I3)   
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(I4)   

(I5)   

                                                             

        is called an  – inner product on X and the corresponding pair  

          called the – inner product space. 

Example:1.3 

If  then the following function 

 

where       defines an  – inner product, called the standard or (simple)  – 

inner product on X.  

Some basic properties of n – inner product  are as follows 

(NIP1)   

              and is known as an extension of the Cauchy – Schwartz 

inequality. 

 (NIP2)         

(NIP3)    

             and  

(NIP4)   

               

                                                                                      

Definition:1.4 

                Let   be an  – inner product space.  

Let  be non negative real valued function  

satisfying the following conditions: 

(i)   if and only if  are linearly dependent. 
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(ii)  is invariant under any permutation of . 

(iii)  for every , . 

(iv)  

                                                                           

for all  then  is called an  – norm on X and the 

corresponding pair  is called  – normed linear space. 

Example:1.5 

The space  equipped with the following  – norm. 

 

where  for each   

Some basic properties of an n – normed space  are as follows: 

(NN1)  

(NN2)   

                            

In any linear  – inner product space   we define an 

  – norm by    

in which the following holds. 

(NN3)   

                                                          

which is known as extension of parallelogram law. 

(NN4) The Polarization identity: 

  

By the Polarization identity and the property (I2) we observe that 

, for every permutation  of . 
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Also  when  or  is a linear combination of  or when 

 are linearly dependent.  

(NN5) Just as in an inner product space, we have the Cauchy – Schwartz inequality. 

 
  And the equality holds if and only if  are linearly   

 dependent. 

Note:1.6 

                      If  is an – normed linear space in which the condition 

 

                                                                   is satisfied 

for all  then  – inner product 

  on X is defined by  

 

Some basic lemmas 

Lemma:1.7 

            In  – inner product space, we have the following  

(i)   

                            

(ii)  

                        

(iii)  

                        

(iv)  

                        

Proof: 

(i) Consider  

                         by (NN2) 

                         

Again,  
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                        by (NN2) 

                         

(ii) Consider  

                         by (NN2) 

                         

Again,  

                        by (NN2) 

                         

(iii) Consider  

                         by (NN2) 

                         

Again,  

                        by (NN2) 

                         

(iv) Consider  

                         by (NN2) 

                         

Again,  

                        by (NN2) 

                         

 Lemma:1.8 

  In any  – inner product space X, the followings hold: 

(i)   

                            

(ii)  
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(iii)  

                        

(iv)  

                        

Where  

Proof: 

(i)   

           

          

              +  

           

                

           

               

              

           

              

              

           

              

Now,  

                                             

     

Also,  
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Now,  

                                            

                         

                               

                            

                               

                       

Therefore, we have  

  

                                                                  

Now from Lemma 2.7 we have  

  

              . . . (I) 

  

                                       

               . . . (II) 

Theorem: 1.9  

          An  – normed linear space X is an  – inner product space if and only if (I) is true and 

 – inner product is given by (II). 

Proof: 

Suppose X is an  – inner product space. Then by lemma 2.7 (I) follows. 
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Assume (I) is true in an  – normed linear space X. using (I) we have 

(A):  

                                                          

                  

                      

                

                     

                

                   

(B):  

                                                          

                  

                     

                

                     

               

                   

Adding (A) and (B) we have  

  

                                

Therefore we have an  – inner product space with  

 

Once again using (I) we have 

(C):  
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(D):  

                                                          

           

                

           

                

           

               

Subtracting (D) from (C) and using (II) we get,   

 

                                   

                                      

This completes the proof. 
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